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Hypothesis Testing
•  Simplest case:  Deciding between two hypotheses.
   Typically called the null hypothesis H0 and the 
    test hypothesis H1

•  Can’t we be even simpler and just test one hypothesis H0?
•  Data are random -- if we don’t have another
    explanation of the data, we’d be forced to call it a
    random fluctuation.  Is this enough?
•  All models are wrong, but some are useful.
H0 may be broadly right but the predictions slightly flawed
•  Look at enough distributions and for sure you’ll spot one
   that’s mismodeled.  A second hypothesis provides guidance
   of where to look.

•  Popper:  You can only prove models wrong, never
    prove one right.
  
•  Proving one hypothesis wrong
    doesn’t mean the proposed alternative must be right.
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Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 1:  Devise a quantity that depends on the observed
  data that ranks outcomes as being more signal-like or 
  more background-like.

  Called a test statistic.  Simplest case:  Searching for a new
  particle by counting events passing a selection requirement.

  Expect b events in H0, s+b in H1.

  The event count nobs is a good test statistic. 

Step 2:  Predict the distributions of the test statistic separately
      assuming:
      H0 is true
      H1 is true
   (Two distributions.  More on this later)



Statistics/Thomas R. Junk/TSI July 2009 4

Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 3:  Run the experiment,
  get observed value of test
   statistic.

Step 4:  Compute p-value

p(n≥nobs|H0)

µ = 6

Example:
  H0: b = µ = 6
         nobs = 10
    p-value = 0.0839

A p-value is not the “probability H0 is true”
But many
often say that.
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Common Standards of Evidence
Physicists like to talk about how many “sigma” a result
corresponds to and generally have less feel for p-values.

The number of “sigma” is called a “z-value” and is just
a translation of a p-value using the integral of one
tail of a Gaussian

Double_t zvalue = - TMath::NormQuantile(Double_t pvalue)

1σ⇒15.9%

Tip: most physicists talk about p-values now but hardly
use the term z-value

Folklore:
95% CL -- good
   for exclusion
3σ: “evidence”
5σ: “observation”
Some argue for
a more subjective
scale.

! 
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Sociological Issues

•  Discovery is conventionally 5σ.  In a Gaussian asymptotic
  case, that would correspond to a ±20% measurement.

•  Less precise measurements are called “measurements”
   all the time

•  We are used to measuring undiscovered particles and
   processes.  In the case of a background-dominated search,
   it can take years to climb up the sensitivity curve and
   get an observation, while evidence, measurements, etc.
   proceed.

•  Referees can be confused.
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A More Sophisticated Test Statistic
What if you have two or more
bins in your histogram?  Not
just a single counting experiment
any more.

Still want to rank outcomes as more
signal-like or less signal-like

Neyman-Pearson Lemma:  The
likelihood ratio is the “uniformly
most powerful” test statistic
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Acts like a difference of Chisquareds in the Gaussian limit
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signal-like bkg-like

yellow=p-value
for ruling out
H0. Green=
p-value for ruling
out H1
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More Sensitivity or Less Sensitivity

signal p-value very small.  
Signal ruled out.

Can make no statement
regardless of experimental
outcome.
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What’s with     and          ?
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A simple hypothesis is one for which the only free
parameters are parameters of interest.

A compound hypothesis is less specific.  It may have
parameters whose values we are not particularly
concerned about but which affects its predictions.
These are called nuisance parameters, labeled θ.

Example:  H0=SM.  H1=MSSM.  Both make predictions
about what may be seen in an experiment.  A nuisance
parameter would be, for example, the b-tagging efficiency.
It affects the predictions but in the end of the day we
are really concerned about H0 and H1.
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What’s with     and          ?
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We parameterize our ignorance of the model predictions
with nuisance parameters.

A model with a lot of uncertainty is hard to rule out!

  -- either many nuisance parameters, or one parameter
     that has a big effect on its predictions and whose
     value cannot be determined in other ways
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maximizes L under  H1 

maximizes L under  H0 
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Example:  flat background, 30 bins, 10 bg/bin, Gaussian signal.
Run a pseudoexperiment (assuming s+b).

Fit to flat bg, Separate fit to flat bg + known signal shape.
The background rate is a nuisance parameter θ = b
Use fit signal and bg rates to calculate Q.
Fitting the signal is a separate option.

Fit twice!  Once assuming H0, once assuming H1

! 

get ˆ " 

! 

get ˆ ˆ " 



Statistics/Thomas R. Junk/TSI July 2009 13

Fitting Nuisance Parameters to Reduce Sensitivity to Mismodeling

Means of PDF’s of -2lnQ
very sensitive to background
rate estimation.

Still some sensitivity in PDF’s
residual due to prob. of each
outcome varies with bg estimate.



Statistics/Thomas R. Junk/TSI July 2009 14

Some Comments on Fitting

•  Fitting is an optimization step and is not needed for
   correctly handling systematic uncertainties on nuisance
    parameters.

    More on systematics later

•  Some advocate just using -2lnQ with fits as the final
    step in quoting significance (Fisher, Rolke, Conrad, Lopez)

•  Fits can “fail” -- MINUIT can give strange answers
    (often not MINUIT’s fault).  Good to explore distributions
    of possible fits, not just the one found in the data.
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An Alternate Likelihood Ratio
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Fit the signal freely in H1.   H0 is then just a special
case of H1 (with s=0).  Maximize over parameters of
interest.

If we maximize the numerator, it will always then be at
least as big as the denominator.

2lnQ will be distributed as a chisquared with one 
degree of freedom then -- Wilks’s Theorem
  (but -- need to check.  MINUIT can give strange answers)
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Expected p-values and Error Rates

•  If H0 is true, then the distribution of the p-value is 
   uniform between 0 and 1

•  If H1 is true, then the distribution of p-values will be
   peaked towards smaller values (can be quite small
   if our sensitivity is large)

•  We quote sensitivity as the median expected p-value
   if H1 is true.  Physicists say “sensitivity” -- statisticians
    use “power”

•  Need to set a threshold for p-values to claim evidence
   or discovey (3σ and 5σ).  These are the error rates
    e.g., 2.87E-7 is the error rate for false 5σ discoveries
   These are called “Type-I Errors” in stats jargon:
    rejecting H0 when it’s true.

•  Can calculate probability of a 5σ discovery if H1 is
 true -- spokespeople and lab directors like this. 
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Incorporating Systematic Uncertainties into the p-Value
Two plausible options:

“Supremum p-value”

Choose ranges of nuisance parameters for which the
 p-value is to be valid

Scan over space of nuisance parameters and calculate the 
p-value for each of those.

Take the largest (i.e., least significant, most “conservative”) p-value.
“Frequentist”  -- at least it’s not Bayesian

“Prior Predictive p-value”

When evaluating the distribution of the test statistic, vary the nuisance
parameters within their prior distributions.  “Cousins and Highland”

Resulting p-values are no longer fully frequentist but are a mixture of
Bayesian and Frequentist reasoning.    In fact, adding statistical errors
and systematic errors in quadrature is a mixture of Bayesian and
Frequentist reasoning.  But very popular.
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Fitting and Fluctuating
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• Monte Carlo pseudoexperiments
    are used to get p-values.
• Test statistic -2lnQ is not uncertain 
     for the data.
• Distribution from which -2lnQ is
   drawn is uncertain!

•  Nuisance parameter fits in numerator and denominator of -2lnQ do not incorporate
    systematics into the result.
    Example -- 1-bin search; all test statistics are equivalent to the event count, fit or no fit.

•  Instead, we fluctuate the probabilities of getting each outcome since those are 
   what we do not know.  Each pseudoexperiment gets random values of nuisance parameters.

•  Why fit at all?  It’s an optimization.  Fitting reduces sensitivity to the uncertain true
   values and the fluctuated values.  For stability and speed, you
   can choose to fit a subset of nuisance parameters (the ones that are constrained 
   by the data).  Or do constrained or unconstrained fits, it’s your choice.

• If not using pseudoexperiments but using Wilk’s theorem, then
  the fits are important for correctness, not just optimality.
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The Trials Factor
•  Also called the “Look Elsewhere Effect”
•  Bump-hunters are familiar with it.

What is the probability of an upward fluctuation as big as the
one I saw anywhere in my histogram?

-- Lots of bins → Lots of chances at a false discovery
-- Approximation:  Multiply smallest p-value by the number of 
  “independent” models sought (not histogram bins!).
   Bump hunters:  roughly (histogram width)/(mass resolution)
   Criticisms:
      Adjusted p-value can now exceed unity!
      What if histogram bins are empty?
      What if we seek things that have been ruled out already?
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The Trials Factor
More seriously, what to do if the p-value comes from
a big combination of many channels each optimized at each
mH sought?  
•  Channels have different resolutions (or is resolution even
    the right word for a multivariate discriminant?
•  Channels vary their weight in the combination as 
   cross sections and branching ratios change with mH

Proper treatment -- want a p-value of p-values!  
(use the p-value as a test statistic)
Run pseudoexperiments and analyze each one at 
each mH studied.  Look for the distribution of smallest p-values.

Next to impossible unless somehow analyzers supply
how each pseudo-dataset looks at each test mass.
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An internal CDF study that didn’t make it to prime time
 – dimuon mass spectrum with signal fit

249.7±60.9 events fit in bigger
signal peak (4σ? No!)

Null hypothesis pseudoexperiments
with largest peak fit values

(not enough PE’s)
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Looking  Everywhere in a mee plot

• method:
– scan along the mass

spectrum in 1 GeV steps
– at each point, work out prob

for the bkg to fluctuate ≥
data in a window centred on
that point

• window size is 2 times the
width of a Z' peak at that mass

– sys. included by smearing
with Gaussian with mean
and sigma = bkg + bkg error

– use pseudo experiements to determine how often a
given probability will occur e.g. a prob ≤0.001 will
occur somewhere 5-10% of the time

Single Pseudoexperiment
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Aside -- Blind Analysis
•  Fear of intentional or even unintentional biasing of results
   by experimenters modifying the analysis procedure after
   the data have been collected.

•  Problem is bigger when event counts are small -- cuts
   can be designed around individual observed events.

•  Ideal case -- construct and optimize experiment before the
   experiment is run.  Almost ideal -- just don’t look at the data

•  Hadron collider environment requires data calibration of
   backgrounds and efficiencies

•  Often necessary to look at “control regions” (“sidebands”)
   to do calibrations.  Be careful not to look “inside the box”
   until analysis is finalized.  Systematic errors too! 
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At Least they Explained what They Did

Dijet mass sum in e+e-→jjjj
ALEPH Collaboration, Z. Phys. C71, 179 (1996)

“the width of the bins is
designed to correspond to twice
the expected resolution ... and
their origin is deliberately chosen
to maximize the number of
events found in any two
consecutive bins”
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No Discovery and No Measurement?  No Problem!

•  Often we are just not sensitive enough (yet) to discover
   a particular new particle we’re looking for, even if it’s
   truly there.

•  Or we’d like to test a lot of models (each SUSY parameter
    choice is a model) and they can’t all be true.

•  It is our job as scientists to explain what we could have
   found had it been there.   “How hard did you look?”

Strategy -- exclude models:  set limits!
•  Frequentist
•  Semi-Frequentist
•  Bayesian
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CLs Limits -- extension of the p-value argument

•  Advantages:  
• Exclusion and Discovery p-values are consistent.
   Example -- a 2σ upward fluctuation of the data
   with respect to the background prediciton appears
   both in the limit and the p-value as such
•  Does not exclude where there is no sensitivity
  (big enough search region with small enough resolution
   and you get a 5% dusting of random exclusions with
    CLs+b)

p-values:
    CLb = P(-2lnQ ≥ -2lnQobs| b only)
Green area = CLs+b = P(-2lnQ ≥ -2lnQobs | s+b)
Yellow area = “1-CLb” = P(-2lnQ≤-2lnQobs|b only)

CLs ≡ CLs+b/CLb ≥ CLs+b
Exclude at 95% CL if CLs<0.05
Vary r until CLs=0.05 to get rlim

(apologies for the notation)
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A Simple Case -- CLs in a Counting Search

CLs+b =  p(n≤nobs|s+b)

-2lnQ is just a monotonic function of the observed
number of events.  In this case, more events is more
“signal-like” (s+b>b).  Not always the case

Probability of s+b fluctuating
downwards to nobs or less
(question: why not ask for
  equality?).  “What is the
 chance of missing the signal
  this badly?

CLb = p(n≤nobs|b) Not quite 1-discovery p-value
(equality flipped)

CLs=CLs+b/CLb
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Overcoverage on Exclusion

T. Junk, NIM A434 (1999) 435.

No similar penalty for the discovery p-value 1-CLb.  

Coverage:  The “false exclusion rate” should
be no more than 1-Confidence Level

In this case, if a signal were  truly there, 
we’d exclude it no more than 5% of the time.
“Type-II Error rate”  Excluding H1 when it is
true

Exact coverage:  5% error rate (at 95% CL)
Overcoverage:   <5% error rate
Undercoverge:   >5% error rate

Overcoverage introduced by the ratio  CLs=CLs+b/CLb
It’s the price we pay for not excluding what we have no
sensitivity to.
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Different kinds of analyses switching on and off

OPAL’s flavor-independent
hadronically-decaying
Higgs boson search.

Two overlapping analyses:
Can pick the one with the
smallest median CLs, or
separate them into
mutually exclusive sets.

Important for SUSY Higgs
searches.
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The “Neyman Construction” of Frequentist Confidence Intervals

Essentially a
“calibration curve”

• Pick an observable x
  somehow related to the 
  parameter θ you’d like
  to measure
• Figure out what 
  distribution of observed
  x would be for each value
  of θ possible.
•  Draw bands containing
   68% (or 95% or whatever)
   of the outcomes
•  Invert the relationship using
 the prescription on this page.

A pathology: can get an
empty interval.  But the error
rate has to be the specified one.
Imagine publishing that all branching ratios
between 0 and 1 are excluded at 95% CL.Proper Coverage is Guaranteed!
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A Special Case of Frequentist Confidence Intervals: Feldman-Cousins

G. Feldman and R. Cousins,
“A Unified approach to the 
classical statistical 
analysis of small signals”
Phys.Rev.D57:3873-3889,1998. 
arXiv:physics/9711021

Each horizontal band contains 68% of
the expected outcomes (for 68% CL
intervals)

But Neyman doesn’t prescribe which 68% 
of the outcomes you need to take!

Take lowest x values: get lower limits.
Take highest x values: get upper limits.

Cousins and Feldman:  Sort outcomes by
the likelihood ratio.

R = L(x|θ)/L(x|θbest)

R=1 for all x for some θ.

Picks 1-sided or 2-sided intervals --
no flip-flopping between limits and 2-sided
intervals.

No empty intervals!
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Some Properties of Frequentist Confidence Intervals
•  Really just one:  coverage.  If the experiment is repeated many times, 
  the intervals obtained will include the true value at the specified rate 
  (say, 68% or 95%).

  Conversely, the rest of them (1-α) of them, must not contain the true value.

•  But the interval obtained on a particular experiment may obviously be in 
   the unlucky fraction.  Intervals may lack credibility but still cover.

   Example:  68% of the intervals are from -∞ to +∞, and 32% of them are empty.
  Coverage is good, but power is terrible.

   FC solves some of these problems, but not all.
   Can get a 68% CL interval that spans the entire domain of θ.
   Imagine publishing that a branching ratio is between 0 and 1 at 68% CL.

   Still possible to exclude models to which there is no sensitivity.

   FC assumes model parameter space is complete -- one of the models in there
   is the truth.  If you find it, you can rule out others even if we cannot test them
   directly.


